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Abstract 1. Consistency: No two processes decide on dif-
ferent values;

In [A88], Abrahamson prebented a solution to the 2. Validity: If all processes have the same ini-
randomized consensus problem of Chor, Israeli tial value, then processes decide on that
and Li [CIL87], without assuming the existence of value.
an atc.mic coin flip operation. This elegant algo-
rithm uses unbounded memory, and has expected 3. Wazt-freeness: Each process is guaranteed
exponential running time. In [AH89], Aspens and to decide after a finite number of steps, in-
Herlihy provide a breakthrough polynomial-time dependently of other processes.
algorithm. However, it too is based on the use
of unbounded memory. In this paper, we present In a shared memory in which only atomic read
a solution to the randomized consen: us problem, and write operations are allowed there is no de-
that is bounded in space and runs in polynomial terministic solution to the problem. This result
expected time. was directly proved by lAG88, CIL87, LA87] and

implicitly can be deduced from [DDS87. FLP85].
Herlihy [H88] presents a comprehensive study of

1 Introduction the problem, and of its implications on the con-
struction of many synchronization primitives.

The Consensus Problem in shared memory en- A randomized solution to the consensus prob-

vironment is that of providing an algorithm, by lem is one in which, rather than being guaranteed,
which n processes, running asynchronously and it is only expected that the number of steps until

communicating via shared memory, can agree on a process decides is finite, that is, property (3)

a value. Loosely speaking, the algorithm should above is replaced by:

have the following properties: 3. Finite expected waiting: The expected num-

*MIT Laboratory for Computer Science, supported ber of steps until a process decides is finite.
by NSF contract no CCR-8611442, by ONR contract no
NOO14-85-K-O168, and by DARPA contract no N00014- Such an algorithm, provides a basis for construct-
83-K-0125 ing novel universal synchronization primitives.t IBAM Almnaden Researrh Center and Hebrew Univer-

sity, Jerusalem. such as the fetch and cons of [H88], or the sticky
tHebrew University, Jerusalem. Supported by an Is- bits of [P89].

raeli Communications Ministry Award. Currently visit-
ing the TDS group at MIT, supported by NSF contract Chor, Israeli, and Li [CII,87] were the first to
no CCTR-8611442, by ONR contract no N0014-85-K-0168, provide a time-efficient randomized solution to
by DARPA contract no N00014-83-K-0125, and a special the problem, using bounded size memory. Their
grant from IBM. solution wa0 based on the availability of a pow-

Y.wutrl,- :.,t,-uncncy, Atomic Registers, Consensus, erful atomic coin flip operation. In [A88], Abra-
Strialization. hIIamsol presented a first, solution not assumiing



the existence of such an operation However, processes 'I in.,, tx: It ,ia i.s abstracted into the
this elegant algorithm uses unbounded memory, notion of creating a shared global coin [CMS85].
and has exponential expected running time. The Since attempts to lock for a value based on the
queotion was thus raised: shared coin could still fail (because as shown in

[AI88], one cannot create a perfect coin) re-
Does there exist an algorithin that is peated global coin tosses are needed. When im-
polynoiural in running iune and bounded plementi",g multiple coin tosses, one must re-
in memory size? member that processes run at different paces, so

one should take rare to a. pre" nt ifixups be-
An exponential time algorithn can be derived tween locations in iennory used for new and old
from that of [ASS] (see [ADS89]) using a transfor- coins, and b. provide independence among shared
mation based on the concurrent time stamp sys- coin flips (this means preventing processes in old
tern techniques of [DS89]. Aspens and lHerlihy coin toss phases. from causing attempts of pro-
(in [AH88]) provide a breakthrough algorithm cesses in later coin tos.- )c fail;. '1he al,. .rithm
that runs in polynomial expected time. Unfor- uses an unbouded trip of cins, where for each
tunately. it is based on the use of unboundei size toss a separate set of ienory locations is al-
memory in a "stronger" way than in [A88]. Since located; this allows to distinguish between coin
for reasons presented in the sequel. there seems to tosses, and thus to niit the above requirements.
be no transformation of [AH881 to a bounded pro- Summing the above, n achieving polynomial
tocol using concurrent time stamping techniques. expected te aboued s aie.n oor-the above quest ion remained unanswered. expected time, unbounddess is used. n-t to or-

der any two specific coin flipping events by the

In this paier, we present a solution to the relative times in which they, o'cu rred (a prop
randomized consensus problem that both runs erty provided by concurrent time stamping), but
in polynomial expected time and is bounded in by how many coin flipping events is one process
memory size. trailing behind the other-

The main reason for the simplicity in providing In [AH88], inu addition to, ihe above use of un-
an exponential time randomized consensus algo- bounded memory, the weak shared coin flip con-
rithm using bounded space, is that all one need struction requires that each coin location in the
provide are actually the properties of consistency unbounded strip be in itself unbounded. Finally,
and non-triviality. The wait-freeness, i.e. expo- f i .'e of a random walk to create the shared
nential expected unning time, is (though hard cc, sed on a snapshot view of memory. The
to analyze) just the result of the exponentially impi, .-ntation of this snapshot operation also
small probability that processes flipping indepen- uses unbounded counters.
dent coins, will come up with the same value. To
provide the former two properties, one need only The main cointribution of our paper is an im-
create a locking mechanism that will provide ex- plementation that, achieves the properties of the
clusion, before allowing processes to decide on coin strip tsing bounded memory. It is based on
a value. Si,-h unbounded locking mechanisms a technique for maintaining a "shrunken" version
are based on time stamping concurrent lock set- of the strip, effectively pulling together processes
ting events, a process that has been shown to be that opened a gap between one another. In addi-
modularly replaceable using bounded concurrent tion, it is shown how to prforni the random walk
t,1iic slan-.p systerns. using only bounded coin locations. Finally, our

algorithm is based on the availability of a mem-In order to obtain an algorithm that, rurbs in r ~mtv, .ibanlsa cncnb
expected polynomial time, as [A88],ih a Anshot scan can beexpcte poynoialtim, a [A118]. ne ust performed. We show bow to implement such a

limit the ability of the adversary to create non- p r ie W e d oy.

decision scenarios while processes try to lock for primitive boundedly.

values A way rf ' d'K'.. K 1, c A. of the paper is organized as follows.
cess' decision to attempt to lock for a value, on a In Section 2 a scannable nieniory primitive is de-
function of more than just one independent local fined and constructed. lii Section 3 a bounded
coin toss, preferably on many coin tosses by all memory implementation of a weak shared coin



is presented. In Section 4 the implementation of Let --- be the can affect relation of [L86a,
tue ,oin strip is presented. We introduce a to- L86c]. A global tirn model' of operation exe-
ken game capturing the properties of the strip. cutions is assumed (see [1,86a, B88]). The follow-
A shrunken version of the game is shown to pro- ing definition attempts to capture the notion that
vide the same properties, and is then translated a possible effect of one operation on the shared
into a game on a weighted graph. Finally, a con- memory (such as the writing of a value), existed
current implementation of the game on the graph at a point in global time where the other was
is presented. Section 5 shows how bounded size being executed.
strips of coins can be manipulated based on the
concurrent graph game. All the unbounded con- Definition 2.1. A write operation execution
structs of the [AH88] type algorithm presented in I t[a] potentially coexists with another operation
Section 5, are then replaced by the bounded ones, Ib)
providing the desired solution. In Section 6, an execution O l (0 stands for either a scan or
outline of the correctness proof of the algorithm write) if WtV[a ---.. O b and there does not exist

is presented. Due to lack of space, some of the a Wi[ '] such that Wi[ -] - 0 1bi.
proofs are omitted.

With each write operation execution I,[kl, a
2 Snapshot Scanning value iJ kl written into V is associated. A scan

operation returns a vieu', a set of values i=
2.1 Definitions {fVk,] ... k.]}12

A Scannable Memory V is an abstract data type The following requirement is made to assure that

shared among n concurrent and completely asyn- the snapshot view v returned by SJb] is a mean-
chronous processes. There are two operations ingful one, namely, returning the values of write
that any process can execute on V, a write oper- events immediately before or concurrent with the
ation and a scan operation. As discussed below, scan, and not just, any possible set of values.
it is not assumed that these operations are nec-
essarily waitfree [H88, AG88]. P1 regularity: For any value v in v of *lb].

Assume that each process' program consists, W[a] potentially coexisted with SI' ]

among other, of the above two operations, whose
execution generates a sequence of elementary op-
eration executions, totally ordered by the pre- The above eliminates uninteresting trivial so-
cedes relation (of [L86a, L86c] denoted " - "). lutions and introduces a measure of liveness into
The following the system. More importantly, it implies that

the behavior of the scannable memory is as if
i Sl 2] - i it consists of disjoint registers, one per process,

2 ] _- Sa[3] _ S[4] which the designated process can write, and all
can read. This is very different from the behav-

is an example of such a sequence by process i, ior of multi reader multi writer atomic registers,1k] where the latest write of any process erases the
where WI3

] denotes process i's kth execution of a values written by others.

write operation, and SIk] the kih execution of a

scan operation (the superscript [k] is used for no- Though a scan as above is sufficient for many
tation, and is not visible tQ, the processes). One applications, one is interested in a scan that re-
.Thould bear in mind that the asynchronous na- turns an "instantaneous" view of memory, that
ture of the operations Pillc"" . ititions where i_, living the folllwirg stronger proppL-L.
a nar o'eAaps many consecutive write opera- 'Ipyig that for any two operation executions,
tiojis of other processes. Also, several consecutive a - b or b --- a.a .... b or b ---. a.
scans could ;.ossibly be overlapped by a single 2Initialization and safety are similar to Arioms 8O-.

write operation. for single-writer atomic registers [L86b]



P2 snapshot: For any two values r,1,. and t- b
I simplify the proofs (aid only for this purpose),

in r of Sk ,Vral potentially coexisted with an alternating bit field is assumed to be added

or, 1  bt potentially coexisted with , such that two values written
j in consecutive writes by the same process, always

I t .  or both. differ.

Though PI-'2 ret The main idea behind the implementation ot'
urn values that could have been the scan and write operations is as follows. A

returned by anl instantaneous scan. they do not value of 1 in register A3 i denotes an "arrow"
imply that scan operations of all processes areserializable. Mlorover. they do riot iniply that politing from j to i, a alue of 0deniotes ana .rrow
saeraliable.wiorovern atey dnapot impy Tht from i to j. To scan the memory. a process i will
later scans will obtain later snapshot views. The direct all arrows Aj, towards other processes, per-
following property is therefore added, to formal- form a collecting of values followed by a collecting
ize, together with P1-2. the idea that all scans o
are serializable. of arrows, and repeat these two collections again.

If the values have not changed and nc arrow has
st [b a S ( been redirected towards it, process I has collected

P3 ;can serialiiabiltq: Lc an be any 4
k " a snapshot in its second read of every register.

pair of scans. Let tia] and vi; , i E { 1..n }, To write a value, a process j directs the arrows
denote the corresponding values returned by Aji towards any possibly-scanning process. noti-
the two scans. Then either for every i C f'ing that it has started a write. lhen writes the
{i ..n}. a, _ a', or for every i C { 1. In}, a' < value. The following are the write and scan pro-
a,. cedures of a process z, where we use the notation

j c {1..n} - {i} to denote that indexing is per-
For the purposes of the applications in this pa- formed in some arbitrary order.

per, it is not required that both scan and write

operations be waitfree [H88, AG88]. Since every procedure wrzte(value);
process' execution sequence will be an alternating begin
sequence of scan followed by write, it will actu- for j E {I .n} - {i} do A,j 1 od;
ally suffice that in any infinite system execution, V := Value;
there exists a new write operation infinitely of- end write:
ten. In the full paper, a formal treatment of this
property is provided.

Assume that a process, during the execution of

2.2 Bounded hnplementation of the scan operation, has seen no arrows redirected.

Scannable Memory and both values being Ilhe same. It can thus de-
duce that no process whose corresponding value it

The implementation is based on the use of returns, could have performed its following write,

tingleuriter-multt-reader and two-writer-two- cnmlletely before any of the other writes whose

rrader atomic registers. The scannable mer- values it returns. The reason is that if that were

org V will consist of n single-writer-multi-reader the case, the writing process would have turned

atomic registers Vi, i E {1..nj. each Vi written the arrow and the scan would have gone through

by process i and read by all. In addition, for ev- another round.

ery pair of processes i and j, a pair of two-writer-

two-readeratomic registers Aij and Aji are main- function scan

tained ". Bounded constructiuns of such registers begin
from weaker primitives are shown in [B187, L86b, L: forj C { ..n} - {i} do Aj 0 od:
1L88. BP87, N87, SAG87, LV88, DS89]. Register for ) E {1.,n} - {i} do VI) V od;
4ij is used by i to inform j that it has updated for j C In } - {i} do V2[] = 3 od;
i, and by j to mark that it has read V. To for j E {1..it} - {i do AD'] :-- A3i, od:

3 To save in the complexity of constructing multi writer 
4
The two phases of val,-collecting are also used to

registers, the arrows technique of [DGS88] can be used. simplify the proofs.



if (3j)(AjI = I V Vl(j] # V2[j]) itJ , nor It t[], potentially coexisted with the
then goto L fi; other. W.I.o.g, it must be that

return IV2:
entd scan: (3BI 'l)(Wa] ,W[a'] _. Wb)'_

By the scan algorithm, wkc](Ajk)- rk 1 (i).
Though the write operation is waitfree, the scan Sice 1 and not '] 

[) (i),
1 ad otViwas returned inrC(V)

operation is of course not, because scans may re- r[c](V) a ,' ,. ----I-
peatedly be forced to return to line L. However, it  m be W hat

it must be thatscans do not wait for other scans, and the above [a]'(Vi) _ wjb](Ajk) - wb(v). Also. be-
can only happen on account of repeated execution

of new write operations by some process. Thu,, it cause v was returned in r](I), it is must he
can be proven that the implementation provides the case that wb](Vj) - r'C](Vj). Again by the
the type of progress described in the previous sec- scan algorithm, rC](V) - r cl(Ajk). From the
ion, above, by the transitivity of - , it follows that

The following is the main core of the proofs of

properties PI-3. The notation rl[b](Vij) for ex- W icl(Ajk) wJb(AJk) rY-](AJk).
ample, will denote the first read in scan operation
execution .5"bl of register V'j. Since in wJb(Ajk) a value of 0 was written, this

value must have been read in r'(Ak), , contra-

Lemma 2.1. For any value V [a] in F of SJ] ,  diction to the termination condition of the scan

pote tallycoexisted 
I

wt algorithm. U
Using similar arguments the next two lemmas

Proof Assume by way of contradiction that the prove P3. The following lemma establishes thatProo Asumeby ay f cotraicton hatthe in the two reads of any scan operation execution,
claim does not hold. There must thus exist some
value vaj in 7 of SJsuch that -~(~VItJa) --- the value written in the exact same write is re-vale ,[a  i, ' o bJb , schth t -( i~) --, fbJ) turned.

o r (WI;[ ])(- S 1-- [ol [b)). B y th e

assumption of global time, -,(W[a - SIfb]) im- Lemma 2.3. In any scan operation execution

plies SJ['] - Wi[a], which by atomic register ax- S~cl, for any value vi[ in F[cl, v~a was read in

iom B4 of (L86c], it cannot be that vi[a] was re- both r1c] and r2[c].
turned. Thus, the second condition must hold,
which by the scan algorithm implies Proof Assume by way of contradiction that the

above does not hold. Since the values read in
ivwa'](V) - r2jbl(V,) rl cl and r2[ l must be the same, and two con-

secutive writes have different toggle bit values, it
where viM was returned in r2}b](1 K ), a contradic- must be that for v-l"' and v[a] returned in rl[c
tion to atomic register axiom B4 of [L86c]. 0 and r2[ c) respectively, there must exist a write

This implies P1, the following proves P2 is met. operation execution W[a'
l such that

Lemma 2.2. For any two values via] and Vb] in Wi[a '  [a'] -- Wi[a].

-5 of[ ] , IV[l potentially coexisted with W.bl or In a manner similar to that of the former proof,

j potentially coexisted with Wi[al] or both. by the ordering of reads of Aik and V, it must be
that

Proof Assume by way of contradiction that the w[c](Aik) - rl c)(Vi)
claim does not hold. There must thus exist two k k

values [a] and : fbI in - of Si], such that neither - -'l wt"(Ai] )

[-- --. -m emmmml m l m(V ) (As&)



wc['( v. ) -- 2[](V) - r(Ai.). is, involves a sinall probability that processes will
Wi I k (1 k

This imnplies that tie value of 0 written in disagree on the coin's outcome. Thus, one can al-
Ths i e tlow a process to always decide heads in case its

tuI[(Aik) must have been read in r.(Ai ) a con- counter overflows, as long as the probability of
tradiction to the scans termination condition. • this event can be absorbed into the probability

of processes disagreeing on the outcome.
Lemma 2.4. Let ,[ and S[- be any pair of Let c =< cl ... , c,, > be an array of coun-

scans. JLet viD ' and t ]
, i e {1 ..n}. denote the ters implementing a shared coin. Each counter

corresponding ralues returned by the two scans. ci has values in the range {-(m + 1)..(r + 1)},
Then either for every i {in}. ai !S a', or for written by its corresponding process z. Let
every i E f..n}. a' < a2 . walk.value(c) ~-ci. The following are thus

the functions of process i, for determining if the

Proof Assume by way of contradiction that the random walk has led to a coin value, and for per-
claim does not hold. There must thus exist values forming a step in the random walk by process i.

and c b] in T [d. and and t 
1
b] in F[-

such that a < a' and b > b'. function coin-value (c):
begin

Lemna 2.3 implies that the value returned in 1: if c {-?n..in } then
both reads of a scan operation execution is of the return heads fi;
same write operation. In the scan operation exe- 2: if walk-value(c) > 6 - n then
cution of y, Since in rlvC'](1 ), 0 ,[a'] was returned, return heads

'i[a'] ,;) - rlC'](V). Since in r2He](v , [b] 3: elseif walk_value(c) < -6 n then
' [b)( Y I return tails

was not iturned. r2' ](1'1) - w ). Bythe 4: else return undecidedfi fi:
order of reads in a scan it thus follows that _id coin-value;

w'()-- r 1']( ) procedure walk.step:

rul'] 3 w b]'). beginif flip= heads then ci := ci + 1
By similar arguments, regarding the scan opera- else ci := ci - 1 fi;
tion execution of x, end walk-step:

w1['](t' ) - rl1 ](I-) Lemma 3.1 (Aspnes and Herlihy). The
[']( probability that two processes will disagree on the

coins outcome is (6 - 1)/(26).

By" transit ivity, the combination of these two se- Lemma 3.2 (Aspns and Herlihy). The
quencfs of operation executions contradicts the erpected number of shps until the coin is decided
antisymmetry property of the partial order i ( + dnmr2.

Look at. a random walk starting from 0 with

3 A Bounded Implementation of a barriers at b and -b. consisting of the steps:

Shared Coin 6 1,62 .... bi E {-1.+1} for all i.

The following is a bound on the probability thatTe implementation of the weak shared coin is after ?n steps, none of the barriers was crossed.
based on t he random walk technique of [AH88]. Define

For lack of space we explain only the modification Defin

allowing to bound the size of the counters used to S" =Pro)b K6,1 <b
implement the coin. The main idea of the modi-
fication used is rather straightforward. The coin Clearly, the desired probability is bounded from
implemented by the random walk is weak, that above by S,. This,



Leninia 3.3. Let m = (f(b)b)2 . for some func- In the :. xt Fubsection, a simple game is pre-
tion f. then ther'e (exi';ts a constant C, such that sented in order to make precise the notion of

S< ,7 (proof onuited). "compression" mentioned above. Then. in Sec-

tion 4.2, we show how to store and play this game

Based on the above, one can prove that by using a directed weighted graph. In order to simn-

choosing in to be large enough, the probability plify the presentation this game is sequential. In

that the adversary can force processes to disagree Section 4.3, a data structure that implements the

because of the deterministic choice of heads in game on the graph is defined, as well as the pro-

case of counter overflow, is negligible, as formal- cedures for playing the game on this graph coi-

izod by the following lemma: currently.

The main problem is how to maintain the rele-
Lemma 3.4. There erists a constant C such that vant values using bounded space. given that pro-
the probability that in the random walk generated cesses are asynchronous. For example, it could
by a sequence ofexecutions of the algorithm on a be that process will start flipping a coin in a
giltn Coil ( . round r when round r is maximal, and during its

C . 6 - n coin flipping other processes will move to higher
Prob [c2I > al < rounds, that are an unbounded number of coin

in ~flips 
ahead.

4 The Rounds Strip
4.1 The Game

In this section a method is shown for replacing
the unbounded strip of round locations required imagine the changes to the processes' round num-

by the algorithm of [AH88], by a bounded con- bers as a game played on the natural numbers

struct. The important observation is that this (viewed as an infinite ordered set of points):
algorithm utilizes the rounds strip in a very re- Each processor controls a token, placed at a
stricted way. Informally specific point, initially 0. Denote by ri the loca-

tion of i's token. Each processor can perform theObservation 1. There exists a constant K such
step move-tokeni that places its token at placethazt att ani point in the computation: r, + 1. The game is a (possibly infinite) sequence

of the form move .tokeni 1 , m ovejtokeni 2 . ..

1. The actions performed by any process are

not affected by values of processes that are At any stage of the game, the collection of
strictly more than K rounds behind it. tokens' positions forms a multi-set of integers,

S = {rl . .. r, }. Let 7r be the ordering permuta-
2. If a process performs round r, and cannot tion of S, i.e., S = {rr(i) : r(2) < . < r,(,)).

decide, then there is a disagreement about Let K be some fixed constant. We now intro-
the ralue of the shared coin of round r - K. duce two transformations, that, when applied to
This implies that when this process proceeds the set S, produce a "compressed" representation
to round r + 1, it can withdraw its contn- of it, without losing important information.
button to the coin of round r - K, without
affecting the perfornance of the algorithm.

Shrinking. One is interested in the exact dis-
Thus. a complete picture of the rounds in which tance between two token if and only if, the dis-
processnrs are located is not necessary: rather, it tance between them is less than K. The goal
suffices- to maintain a "compressed" description of of the first, transformation is to "shrink" gaps of
th, dz.stincrs between these round numbers, and length strictly larger than K. to he of size K.

to save pro-esses' contributions to the K latest Iformally, shrinkK(S) is a new set S', in which
coins that were flipped. 'ih following subsec- rr() remains in its current position, whiit any

tions present the data structure used to maintain two consecutive tokens (rr(i) and r,,+l)) that
these distances concurrently, are more than K apart, become K apart, while



tle di.tance between tokens that arc less than K 4.2 Ilepresentation as a Finite Graph
apart, reiiiaiii ui changeI

Formally, let S {r,(l , rt,1 )}. Let Given a state .' of the above game, we define

gap, = I.X,, - r*,(,+, for I < i < n, and define its distance graph G(S), as follows. G is a di-
shrinkK(S) {r' ) < < r' }, (for some rected weighted graph with nodes V= { l..n},

S i ll- corresponding to tokens, one per process, edges
p~aramneter N) inductively as follows: E {(ij) r3 <_ r} indicating relative order of

(1) rrlttoken locations, and weights w(i,j), defined for

(2) Assume we have defined r'1  then any (i,j) E F as
r , I 

-  r) if  ]k
,,,) + K if gap, > A w(i, j) K ot herwise.

+I I r/ , + gapi otherwise

The following propert is of t i list ance graph (,'.

Ilitiwvly, aly "gap" in the sequence, whose are iniplied from tie lefinition of the normaliz,.d
length is strictly larger than A, is "'shrunk" to be shrunken token game:
of length exactly A'.

The shrunken token game is conducted by ex- 1. For any i and j in 1'. at least one of (i.j) or

ecuting a shrinkK on the set of token places (J i) is in E; both edges are in E if and only

after each iove-tokeni, step. before the next if the weight of both is 0.

mot_tokenj,+ step. 2. There is no positive cycle, that is, a cycle

including an edge (i,j) with i(ij) > 0.
Norlnalizing. It is easy to see that after apply-
ing shriik- to any set S, the distance between 3. Let P(ij) be the set of all directed simple

the maximal element and the minimal element is paths from i to j. For every path ; C P(i,j),

at rnot K.n. To compress the values even further let W(C) = u(u. t). It follows from

they are normalized, so that all values remain in the above propert'es that 0 < W( p) KS Kn.

a bounded range. 4. For any two directed paths ,it and 2 C

The ordering pernmutation of S' = shrinkK(S) P(ij), either =() =W(,p2 ), or there ex-
is still -r. The tansformation normalizeK(S') ists an edge (u, v) G 'ol such that w(u, v)
maps each element ri E S' to (ri - r,(,)) + K *n. K.
That is, the maximal token(s) is positioned at
K-n. and the rest of the tokens are move be- 5. For any i and j, such that P(i.j) $ 0, define
hind it while maintaining the distances between dist(i, j) max
tokens. Notice that for any -et S, all the val- 4'EPfi J)

ues in normalizeK(shrinkK(S)) are in the range
[0..K -n]. and define max-paths(i,j) to be

The normahzed shrunken game. is conducted { E P(i,j) I W(p) = dst(i,j)}
by applying shrinkK and then normalizeK to
the set of token places after each move-tokeni, Then W(o) = rj - r, for every o C
step. before the next move-lokeni,+, step. max-paths(i, j).

An important property preserved by the nor-
malized shrunken game is: Let inc (i, G) be defined as the following trans-

formation of graph G for a given z:

Non-Passive Shrinking. For any two token
positions ri and r. in a state of the game, for all j i i in V (to
s.t. 0 < ri - r, :S K, if for later token posi- if (j, i) E G and
tions, r' and ,5. we have r-r = (ri-r.)- 1I (3k)((j, i) E ma xpaths(k, i)) then
then there is a move-tokenj between the two w(j, i) := w(j, i) - 1 fi;
states. if (i, j) E G and



(1 <It(i~j") <K thent (3k)((j, i) G rnaxpaths(k, i))) or
?(i. j) :=it(ij) + 1 fi: ((i, J) E G and u;(i, J) < K) then

if t,(j, i) < (1 then eij =ci[j] + I mod 3K
-Z F - I (j I)}IU{j(ij)}1:f

it(i. j) - u(j, i) fi. od;

Claim 4.1. For' a state S' r(aclied from Otate S
hy( tokenimorr of iin token game A. G(S') - 5 The Algorithm

Based on Observation 1 (Section 4), if a pro-
cess advanced K rounds ahead of another, it can

4.3 lInplernentation of the Graph erase its contribution to the trailing process .coin.

A trailing process performing nexL-coin..valuc us-
Property (1) of the distance graph implies that ing that location wijl possibly see that process'

tl-weight s of all (undirected) edges s ffice to counter as 0, but this can only cause it to performi
induce thte dlirected graph structure. The weights an additional expected 0(n 2 ) steps (by Lemmia
aire maintalied in a collection of e,[1..n] of edge 3.2), before advancing to the next round 5 .

t nih rs. one per each (undirected) edgc (ei[i] is Terudfedo n au ~ ossso wun't used). Each pair -,[j] and ej[i] of counters Thronfelofayvuew nstsfto
in the range {OA.3K-1 }, represents two pointers fields: coin and edge-counters. T!,e coin tich]
(of i and j. respectilvel~v) to a cycle of size 3.K. is an array of coin counters c~oC {O..K},
liv in creinenting the counter, a process moves its with an added current-coin pointer in the range
pointer a in clockwise direction (all arithmetics {O..K} 6 . These counters are used to maintain
in this subsection is modulo 3 K). the local parts of coins corresponding to the lat-

-st K rounds executed by process i. The counter
A ssumIe C, [j] - ej [i] K e, [i] - ej D] then the edge to be used for the niext coin of process i is de-

is (i. j). and uji. j) ej j] - ej [i], and vice versa. terntined by the fun~ction next (current-coin, ), re-
Th us, given t wo edge counters ejD] and ej [iJ, the turning current-coinj mod (K + 1). The edge
existence of a given directed edge is determined counters field is an array of n edge counters as de-
by the rule scribed in Subsection 4.3. Initially all the above

are 0. The following is thus the bounded iruple-
(i. ) C( i (eLi]- e~i]) ei] eil)mentation of the coin flipping and round incre-

andl theic weight w(i. j) of the edge (i, ) is (ei[] menting operations for process i.
(, [I]). Note thlat if e, j] = ej [i], then we have
1k(t lt edges. (i.j) and (j. i) with both weights fiinction ne-Lcoflnialuc( round);
equal toO0. To keep the weight wr(i, j) in the range begin

0O.. A } a process i does not ;ncrement ejU] un- G := inake-graph(e1 [1 I .e[.n)
less it is the trailing pointer, or it leads by less c[i] := coini [next (current-cozi)j;
than1 K. for j := 1 to n skip i do

Lmt iakt-graph !.e the procedure that, given if , ) G~ aond curcnLi) n

the collection of all edge counters, creates a graph wU]j: ci) + 1) mnt-o (n±1)

representat ion, as described above. The following else , i] +~ 0 ) od ( )

procedure is thus the (possibly concurrent) imple- r e coznrlu:=0 c);

mentat ion of one increment, move on the graph G. end;

function inc..graph(e(1..n]..c,[I..n]): 'Several modifications that will improve the expected
begin running time here and elsewhere in the algorithm are pos-

G := akegraph(e1 [I..n]..e,[1..n]); sible, but are not introduced for the sake of simplicity.
'In the procedures below, all fields are first writtenfor j := I to n skip i do to a local variable, on which the write operation of the

if ((j. i) C G, and scannable memory is then performed.



procedure flip_ncx1_cozn(round): lidity, and that it terminates in polynornal cr-
begin pected lime. To simplify the proofs, the notion

ualkstclp ( coin[next ( currenLcoini )]): of a virtual global round is introduced, support-
ex d: ing the illusion that a process has an unbounded

and monotonically non-decreasing round num-
function znc( round); ber, and that a unique shared coin is associated

begin %ith each round.

current-coni := next(curredtcoini);
rotn iLne-t (current..cotni )]: 0;

l,'graphi(eti..n], , e7 [1..n]); 6.1 Virtual Global Rounds

The serializability property (P.3) of scan opera-

In the above, proce~dure, note that a process tion executions, implies that there is some linear

prepares, when advancing to a new round the ordering on the scan operation executions per-

,,oin counter for flipping the coin in the next formed by all processes. Througnout the proof.

r aend. let S {a} denote the ah scan in this ordering, if
the at" scan is performed by process j. denote it

WVe assuin,- that processors start with binary by S'ja. One scan operation execution is said
Initial values: however, the protocol can be ex- to be later than another, if it is greater in this
t, de.1 t,, handle arbitrary initial values. 'et K ordering. In the consensus protocol proce.,es al-
he . the following is thus the consensus algo- ternate between performing write and scan oper-
rithii for processor i, with initial value vi. Pro- ations. This implies that between any two scans,
cess iis a leader if for all j : i, (ij) is in G, that Sia} and S{ a +

1
, there is at most one write by

is having r, fqual to or dominating all other rj. any process. Denote by aria } the value of any
Process i agrees with process j, if both prefer the variable var that was read by S' { }

inaflce valu $ - I_.
With each process i, in the ath scan, a

wrute([pref: ri, round: inc(round)]) virtual global round is associated, denoted by
repeat forever round(i, S{0)). The definition is by induction on
1: .ca n: the ordering :.mong scan operation executions.

2: if all who disagree Base case. For all i. round(i, S1}) = 0.
trail by K and I'm a lead,
then ! de(pref); Inductive step. Given round(i, Sa-"]), let

3: elseif leaders agree then
4: urite([prf: t, round: inc(round)]) max= maxiE{1 ,} roind(i,Sf{1'l),
5: elseif pref i _ then
ti: iru/c ([pref: _L, round: roand]) old-leaderstS t-t ) -

elseif nextcoin-value(round) 1i I round(i,S{-}) = mar}.

u n decided then and
7: wrtte([pref: I. new-leaders(S{'}) 0

round:flip-next-coin(round)]) {j lI j E old-leaders(S'{f - ) and

S: 'rrle([pref: next.roinvalue(round),

round: inc (round)])

fi fi fi h Based on the above definitions, define
end: round(i, S {a} ) as follows. If ne ilenders(S{}) a

0, let j" E new-leaders(S{ } ) and define

6 Proof of Correctness
round(iS{S}) -

The following section outlines the proofs that the f max+ I i E newleaders(S a})
algorithm has the properties of consistency, va- max+l - dis(i,j') oth:wise.



In case the set neucleaders(S{a) ) 0 O, let j" E Proof (Sketch) By the algorithm, a process
oldlit adrrs (S " I) and define changes its preference only by executing tic. Let

Spa be the scan performed by p before exc-
roundiii_ " 1 ) = max- dist(i,j). cuting this inc. This can occur only if some

other process, say q, had prefqOl = v, and
The above (definition s simply that if one of the that in the graph returned in S4'), q has non-

leaders in the former scan operation execution

moved, all new processes are ordered relative to negative distance from p. Since rounds are

it, and otherwise t hey are ordered relative to the monotonically non-decreasing, it is the case that

old leaders. Note that though the virtual global round(q, Spfa}) > round(p, S"o a ) and the claim

round of a process might change even without follows U
its p,.rforming an onc operation, it can only in- The above lemma and the code of the algo-
crease, that is. the virtual global round is a non- rithm implies the following two lemmas.
decrea.sing function.

In the fbllowing subsections, a round means a Lemma 6.2. If no process prefers f, at round r

mtrtual global round unless otherwise stated. A when round r is among the 2 largest rounds, then

process p is said to be in round r, starting from no process prefers v at any round r' > r.

the first scan operation execution in which it was
returned as being in r (determined by applying Lemma 6.3. If no process prefers D at round r
the above definition), and in all later scan oper- when round r is among the 2 largest rounds, then
ation executions until it is returned as being in a no process is busy in any round r' > r.

round r' > r. A round is said to be among the K
largest (for some constant K) starting from the Lemma 6.4. If every process that completed
earliest scan operation execution in which some round r, when round r was among the 2 largest

proce'ss is in this round and no other process is rounds, preferred v in round r, then every non-
in a round greater by K, and until the first later faulty process decides v by round r + 1.
scan operation execution for which there is a pro-
cess in a round greater by K. Lemma 6.4 implies validity, since if all pro-

cesses start with the same input value they all

6.2 Consistency and Validity prefer this value in round 1. Hence all processes
will halt at round 2.

Though we have attempted to maintain the gen-
eral structure of the correctness and complex- Lemma 6.5. If any process decides in round r,

ity pro f for the unbounded implementation of then no process will ever be in a round larger than

[A1188], by introd..in, .,irtual global rounds, the . + 2.

differences het" ecn our - unds strip implementa-
tion and thc I. ite rounds strip used in [AH88], The above lemma implies that all processes will
force us t, - , v some of the statcments, and execute round r when it is among the 2 largest
to charge ,._zL of the proofs. rounds. We use this fact to prove that the algo-

For simplicit * - assumed that there are only rithm has the consistency property.

two pos.. ,le inp.. values, where F denotes the
value different f':om v, for v C {O, 1}. A process Lemma 6.6. If some process decides in round r

p prefcrs v in round r, if for some scan S a}. it is then all processes will decide on the same raluf

the case that round.p, S f') - r, and pref 6} = by round r + 1.

n. We have

6.3 Expected Running Time
Leimma 6.1. If process p prefers v in round r
and prefers r in round r' > r, then some process A process is said to have selected its preference
q : p preferred v in round r" > r. for round r deterministically, if it executed the
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